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1. Introduction

Latest investigations demonstrate that breast cancer persists as one of the most threatening cancer types to 
female, accounting for 29% of cancer incidence and 15% of cancer mortality in women (Siegel et al 2017). Early 
diagnosis of breast cancer is vital for the survival of patients. Mammography is one of the most effective and 
efficient breast cancer screening tools. However, analyzing mammograms by radiologists is tedious and the 
interpretations are subject to substantial inter- and intra-observer variations, which may lead to missed cancers 
as well as overdiagnosis (Birdwell et al 2001, Løberg et al 2015). Therefore, a computer-aided detection/diagnosis 
(CAD) system that can work as a second reader is important and necessary.

Various types of abnormalities may show in mammograms, such as asymmetrical breast tissues, adenopathy, 
density, microcalcifications, and masses. Among them, breast masses are believed to contribute significantly to 
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Abstract
Mammography is one of the most commonly applied tools for early breast cancer screening. 
Automatic segmentation of breast masses in mammograms is essential but challenging due to the 
low signal-to-noise ratio and the wide variety of mass shapes and sizes. Existing methods deal with 
these challenges mainly by extracting mass-centered image patches manually or automatically. 
However, manual patch extraction is time-consuming and automatic patch extraction brings errors 
that could not be compensated in the following segmentation step. In this study, we propose a novel 
attention-guided dense-upsampling network (AUNet) for accurate breast mass segmentation in 
whole mammograms directly. In AUNet, we employ an asymmetrical encoder–decoder structure 
and propose an effective upsampling block, attention-guided dense-upsampling block (AU block). 
Especially, the AU block is designed to have three merits. Firstly, it compensates the information 
loss of bilinear upsampling by dense upsampling. Secondly, it designs a more effective method to 
fuse high- and low-level features. Thirdly, it includes a channel-attention function to highlight 
rich-information channels. We evaluated the proposed method on two publicly available datasets, 
CBIS-DDSM and INbreast. Compared to three state-of-the-art fully convolutional networks, AUNet 
achieved the best performances with an average Dice similarity coefficient of 81.8% for CBIS-DDSM 
and 79.1% for INbreast.
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breast cancers (Giger et al 2013). Currently, the majority of breast mass studies concentrated on image-level 
lesion detection and patch-level mass classification or segmentation (Wei et al 2006, Dhungel et al 2015b, 2017, 
Jiang et al 2016, Han et al 2017, Kim et al 2018). However, image-level lesion detection can only give the bound-
ing box of the mass without the boundary information, which has been identified as an important indicator 
of its malignancy (Guliato et al 2008). And patch extraction around the mass before segmentation is a tedious 
and difficult work for radiologists. Therefore, mass segmentation of whole mammograms is of high application 
value for breast cancer detection and diagnosis. Specifically, our focus in this study is the automatic breast mass 
segmentation in whole mammograms, i.e. the segmentation in full fields of view (FOVs) of input mammograms 
rather than extracted regions of interest (ROIs).

Recently, deep learning models, especially convolutional neural networks (CNNs), have seen great successes 
in computer vision and medical imaging (Greenspan et al 2016, Litjens et al 2017, Hamidinekoo et al 2018). In 
respect of medical image segmentation, the most well-known network is UNet (Ronneberger et al 2015) and 
UNet-like architectures are frequently investigated (Balagopal et al 2018, Li et al 2019b). However, most deep 
learning-based models developed for mammographic mass segmentation focus on extracted patches instead 
of the original whole mammograms (Hai et al 2019). In addition to the limited studies, existing deep learning-
based studies conduct whole mammographic mass segmentation by simply combing classic models with some 
effective network modules developed for natural image processing. Atrous spatial pyramid pooling and atten-
tion gates have been introduced to FCDenseNet and Dense-U-Net to enhance the segmentation capacity (Hai 
et al 2019, Li et al 2019a). In these studies, both the network architecture and the added modules were not spe-
cifically optimized for the breast mass segmentation purpose. There is still a large gap to be filled and a lot of 
work to be done. Besides, although CAD systems have been widely developed to assist radiologists in identifying 
suspicious regions, their performance can still be improved since contradictory conclusions exist regarding their 
effectiveness in mammogram interpretation (Lehman et al 2015, Kooi et al 2017). Therefore, we feel motivated to 
investigate the whole mammographic mass segmentation project, which is expected to be a significant add-on to 
the current CAD system for mammographic diagnosis.

In this paper, we propose a new model, attention-guided dense-upsampling network (AUNet), for the seg-
mentation of mammographic masses. Different from the classical symmetric encoder–decoder architecture of 
UNet (Ronneberger et al 2015), AUNet employs an asymmetrical structure—different encoder and decoder 
blocks—through the implementation of residual connections. Furthermore, we design a novel upsampling 
module, attention-guided dense-upsampling block (AU block), to compensate the information loss caused by 
bilinear upsampling, effectively fuse the high- and low-level features, and at the same time, highlight the rich-
information channels. The performance of the proposed network was evaluated on two public mammographic 
datasets, CBIS-DDSM and INbreast. With AUNet, we achieved an average Dice score of 81.8% for CBIS-DDSM 
and 79.1% for INbreast. Both improved the segmentation results of UNet by more than 8.0%. Our major contrib-
utions are: (1) A more effective asymmetric encoder–decoder network architecture is introduced; (2) We propose 
a new block, AU block, that can effectively extract important information from both high- and low-level features; 
(3) AU block can serve as a universal decoder module that is compatible with any encoder–decoder segmentation 
network; (4) Implementing both AU block and the asymmetrical structure, our proposed network, AUNet, is 
able to accurately segment masses in whole mammograms without the need of ROI extraction; (5) Better breast 
mass segmentation performances were achieved by AUNet compared to commonly utilized fully convolutional 
networks (FCNs) in medical imaging. Our code is available at https://github.com/lich0031/AUNet.

2. Related works

In this section, we review the related works on deep learning models for image segmentation and existing 
methods for mammographic mass segmentation.

2.1. Segmentation networks
Since the introduction of FCNs in 2015 (Long et al 2015), most segmentation models follow a similar encoder–
decoder network backbone design. The encoder pathway first extracts high dimensional and high abstract feature 
maps from the inputs, usually with severely decreased resolutions, and then the decoder pathway is responsible 
for the recovery of image resolution and generation of the segmentation results. However, due to the information 
loss during the encoding process by pooling or convolution with strides, the reconstructed segmentation results 
are usually not satisfactory. To solve this issue, works have been done to include conditional random fields as a 
post processing method, which has shown a significant improvement (Kamnitsas et al 2017, Chen et al 2018). 
Another direction is the application of dilated convolution (Yu et al 2017). Dilated convolution can increase the 
receptive field and, in the meantime, keep the image resolution unchanged. Nevertheless, limited by the current 
available computing power, dilated convolution at high image resolutions is hard to achieve if not impossible 
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(Yu et al 2017). UNet proposed another solution to the problem (Ronneberger et al 2015). The main idea of 
UNet is to fuse high-level feature maps that are rich in semantic information with low-level feature maps that 
are rich in location information. By fusing feature maps from different layers, UNet is capable of generating 
accurate segmentation maps for small datasets. However, the feature fusion of UNet is done through simple 
concatenation, which is not effective enough and improvement is necessary for different applications (Lin et al 
2017, Zhang et al 2018).

2.2. Upsampling approaches
Different methods have been adopted in literature to upsample the low-resolution feature maps. Bilinear 
interpolation is a simple and efficient method that has been commonly used (Zhao et al 2017, Chen et al 2018). 
The output of bilinear interpolation is fixed and not learnable, which may cause information loss (Wang et al 
2018a). Deconvolution was first proposed along with FCNs (Long et al 2015) and adopted in later works. 
Deconvolution could be realized in two ways. One is through the reverse operation of convolution (Long et al 
2015). The other is through unpooling, where the low-resolution feature maps are first upsampled to high-
resolution feature maps using the stored max pooling indices and then the sparse feature maps are densified by 
convolutions (Badrinarayanan et al 2017). Both methods result in learnable upsampling procedure but require 
zero padding at the first step. The last method is dense upsampling convolution (DUC) (Wang et al 2018a), 
derived from the sub-pixel convolution method originally developed for image super resolution task (Shi et al 
2016). DUC is also learnable. In addition, different from deconvolution, no zero padding is required for DUC.

2.3. Attention mechanism
Attention mechanism in neural networks has attracted a lot of attention recently. It is proposed in accordance 
with the human visual attention that human beings always focus on a certain part of a given image after quickly 
glimpsing through it. Attention could be viewed as a tool to force the network focusing on the most informative 
part of the inputs or features (Mnih et al 2014). It has been widely applied in natural language processing and 
image captioning (Chen et al 2017, Vaswani et al 2017). Studies also found that CNNs could learn implicitly 
to localize the most important regions of the input images (Zhou et al 2016), which could be treated as a kind 
of attention. To improve image classification accuracies, both spatial and channel-wise attention modules have 
been proposed in literatures (Hu et al 2018, Roy et al 2018). Attention has also been explicitly used for image 
segmentation (Mirikharaji and Hamarneh 2018, Nie et al 2018). Different from these works, which utilize 
attention mechanism to focus on regions of inputs, our proposed AU block implements attention to select 
important channels for breast mass segmentation.

2.4. Segmentation of mammographic mass
Automatic mammographic mass segmentation methods could be divided into unsupervised and supervised 
methods. Unsupervised methods include region-based (Gulsrud et al 2005, Wei et al 2006), contour-based 
(Shi et al 2008, Rahmati et al 2012), and clustering models (Ball et al 2004, Abdel-Dayem and EI-Sakka 2005). 
These models encounter various problems when applied to mammographic mass segmentation (Oliver et al 
2010). Region-based models rely on region homogeneity and prior information is usually needed, such as the 
locations of seeding points and shape information (Kupinski and Giger 1998). Contour-based models are based 
on edge detection whereas it is challenging to extract the boundary between masses and normal breast tissues 
(Sahiner et al 2001). Hierarchical clustering models are computational expansive while partitional clustering 
models need to know the number of regions in advance (Li et al 2002). Supervised methods have a training 
and testing procedure. Pattern matching is widely used for segmentation and detection (Freixenet et al 2008, 
Song et al 2010). Nonetheless, mammographic masses can be in a wide variety of shapes, which hinders the 
usage of pattern matching approaches (Oliver et al 2010). Deep learning models belong to supervised methods. 
Deep structured models have been successfully applied to segmenting masses from ROIs rather than whole 
mammograms (Dhungel et al 2015b, 2015c, 2017). And using manually extracted ROIs could improve the 
segmentation performance compared to automatically detected bounding boxes generated by detection models 
(Dhungel et al 2017), which indicates that the segmentation results depend on the patch extraction process and 
it is difficult to achieve fully automatic mammographic mass segmentation employing this approach. Very few 
attempts on mass segmentation of whole mammograms could be found probably caused by the previously 
discussed difficulties (Hai et al 2019). These studies mainly combined famous segmentation models with some 
special network modules developed for natural image analysis. For example, atrous spatial pyramid pooling 
and attention gates have been introduced to FCDenseNet and Dense-U-Net to enhance the segmentation 
capacity (Hai et al 2019, Li et al 2019a). Considering the gap between medical and natural image domains, these 
models may not be perfectly suitable for the breast mass segmentation task. Moreover, the experiments were 
not comprehensive, and the models were not publicly available. Aiming to address these challenges, our AUNet 
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is designed specifically for fully automatic mammographic mass segmentation. Two public datasets have been 
tested and the models are publicly available.

3. Methodology

In this section, we first describe the datasets used in the study. Then, the proposed network architecture, including 
the asymmetrical encoder–decoder backbone and the AU block, is presented. After that, loss function selection is 
discussed. Finally, quantitative evaluation metrics are listed.

3.1. Datasets
We instantiated our proposed network with two publicly available datasets, CBIS-DDSM (Heath et al 2000, Lee 
et al 2017) and INbreast (Moreira et al 2012). For CBIS-DDSM, a total of 858 images were used in the current 
study with 690 images for training and 168 for validation. The INbreast dataset contains 107 images with accurate 
mass segmentation masks. A 5-fold cross-validation experiment was conducted for INbreast.

All the images along with the masks were first processed to remove the irrelevant background regions (rows 
and columns have negligible maximum intensities) and then resized to 256 × 256, followed by an intensity nor-
malization. Before inputting into the networks, the gray images were changed to RGB images by copying the pixel 
values to the other two channels. The importance of this step will be discussed later. No further data processing or 
augmentation was applied.

Figure 1(a) shows representative images from the two datasets. It could be observed that mammographic 
masses are in a wide variety of shapes and sizes, which increases the difficulty of training the segmentation net-
work. Figures 1(b) and (h) give the area ratio distributions of the two datasets. Both indicate that most masses 
only occupy very small regions of the whole mammograms. Results confirm more than 81.8% masses occupy 
less than 1.0% area of the whole mammograms for CBIS-DDSM. For INbreast, more than 81.0% masses occupy 
less than 4.0% area of the whole mammograms. Therefore, it is much more difficult to train a network capable 
of accurately segmenting masses in whole mammograms than in mass-centered mammographic patches. Other 
available important information including subtlety, mass shape and margin, BIRADS category, and pathology 
are also plotted in figure 1 to comprehensively describe the datasets.

3.2. Asymmetrical network backbone
Our proposed network employs an encoder–decoder architecture backbone (figure 2(a)). The encoder pathway 
contains five encoder blocks with the first four followed by max pooling. Thus, the downsampling ratio is 16 in 
total. The decoder pathway is composed of four alternating upsampling and decoder blocks. The upsampling 
block will be discussed in the next section. The classic UNet employs symmetrical encoder and decoder pathways, 
where the basic unit (figure 2(b)) is implemented for both the encoder and decoder blocks (Ronneberger et al 
2015). Although this simple design contributes to the efficiency of the network, the effectiveness needs to be 
explored. Inspired by the recently wide spread usage of ResNet (He et al 2016), we investigated the feasibility of 
another two configurations, deep unit (figure 2(c)) and res unit (figure 2(d)).

For the three different units, we have the respective outputs as follows:

ybasic(x) = δ(Wb2 ∗ δ(Wb1 ∗ x + bb1) + bb2) (1)

ydeep(x) = δ(Wd3 ∗ δ(Wd2 ∗ δ(Wd1 ∗ x + bd1) + bd2) + bd3) (2)

yres(x) = δ((Wr3 ∗ δ(Wr2 ∗ δ(Wr1 ∗ x + br1) + br2) + br3) + (Wr1 ∗ x + br1)) (3)

where y  is the respective output of the different units and x is the corresponding input. δ refers to the ReLU 
function. W and b refer to the weights and bias of the different convolution layers. * is the convolution operation.

Moreover, we also evaluated the different combinations of applying the three units as the encoder/decoder 
block. In the results section, we will show that constructing an asymmetrical network backbone by applying the 
res unit as the encoder block and the basic unit as the decoder block, the network can achieve the best segmenta-
tion performance.

3.3. Attention-guided dense-upsampling block
Our major novelty regarding the network design lies in the upsampling block, where we introduce our proposed 
AU block (figure 3(b)). The original UNet used deconvolution to upsample the feature maps (Ronneberger 
et al 2015). However, our preliminary experiments found that deconvolution was not as effective as bilinear 
upsampling for our application (supplementary file table S1 (stacks.iop.org/PMB/65/055005/mmedia)), and 
thus, bilinear upsampling was utilized throughout the study.

Phys. Med. Biol. 65 (2020) 055005 (17pp)
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The bilinear upsampling block (BU block) of UNet is shown in figure 3(a), where the high-level features are 
simply upsampled and concatenated with the low-level features after passing a convolution layer. The goal of the 
proposed AU block (figure 3(b)) is to extract all important information from both high- and low-level features. 
The high-level low-resolution features (Fhigh) are firstly upsampled using two different methods. One is dense 
upsampling convolution (Fduc), and the other is bilinear upsampling followed by a convolution layer (Fbuc). The 
convolution layer is always followed by batch normalization and ReLU activation unless otherwise specified. 
Then, Fduc is combined with the low-level features (Flow) by summation (Fsum). A convolution layer is applied 
before Fsum is concatenated with Fbuc (Fconcat) to smooth the concatenation process. In this way, we expect that 
Fconcat contains all the information from both Fhigh and Flow.

The next step is to select the important information from Fconcat. Motivated by the squeeze-and-excitation 
networks (Hu et al 2018), we adopt a channel-wise attention. Firstly, global average pooling is applied to obtain a 
channel-wise descriptor Zc:

Zc =
1

H × W

H∑
i=1

W∑
j=1

(Fconcat,c(i, j)) (4)

where Fconcat,c is the (cth) channel of Fconcat. H and W refer to the height and width of Fconcat,c. Zc passes through two 
fully connected layers (FC layers), one with ReLU and one without, and a Sigmoid function to get the channel-
wise weights S:

S = σ(W2 ∗ δ(W1 ∗ Z + b1) + b2) (5)

where σ refers to the Sigmoid function. W1 ∈ R2n/r×2n, W2 ∈ R2n×2n/r , b1 ∈ R2n/r, and b2 ∈ R2n are the weights 
and bias of the FC layers, respectively. r is a reduction ratio. The output of the AU block is:

F̃concat,c = Sc · Zc. (6)

After that, F̃concat,c  goes through a basic unit (figure 2(b)), which is composed of two convolution layers, and 
then, is treated as the high-level feature input to the next AU block.

3.4. Loss function
The commonly used cross-entropy loss function for two-class segmentation task is defined as:

Figure 1. Representative mammographic images (a) and distributions of the area ratios (area ratio  =  area of the mass/area of the 
whole mammogram) of masses, the subtlety, the mass shape, the mass margin, the BIRADS category, and the pathology diognosis 
for the CBIS-DDSM dataset (b)–(g) and area ratios of masses and the BIRADS category for the INbreast dataset (c). The left three 
images in (a) are from the CBIS-DDSM dataset and the right three from the INbreast. Pink color regions indicate the masses. Insets 
are enlarged patches containing the masses. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Phys. Med. Biol. 65 (2020) 055005 (17pp)
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LCE = − 1

N
(yi

N∑
i=1

pi + (1 − yi)

N∑
i=1

(1 − pi)). (7)

For 2D inputs, N is the total number of pixels in the image. yi ∈ {0, 1} is the ground truth label of the ith pixel with 
0 refers to the background and 1 refers to foreground. pi ∈ [0, 1] is the corresponding predicted probability of the 
pixel belonging to the foreground class.

From the definition, positive and negative pixels contribute equally to the cross-entropy loss. However, from 
figure 1, we know a severe class imbalance problem exists for both datasets that masses only occupy small regions 
of the whole mammograms. Minimization of the cross-entropy loss function may bias the model towards cor-
rectly predicting the negative class. To solve this issue, we introduced another loss function, the Dice loss. The 
Dice loss in our situation is defined as:

LDice = 1 −
2
∑N

i=1 piyi + ε∑N
i=1 pi +

∑N
i=1 yi + ε

 (8)

where ε is a constant to keep numerical stability. It has been reported that applying only the Dice loss makes the 
optimization process unstable (Zhu et al 2019). Therefore, we use a combined loss function for our model, which 
is defined as:

Figure 2. Network architecture and different blocks. (a) Architecture backbone. (b)–(d) Different blocks named as basic unit (b), 
deep unit (c), and res unit (d).

Phys. Med. Biol. 65 (2020) 055005 (17pp)
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L = LDice + αLCE (9)

where α is a weight constant to control the trade-off between the cross-entropy loss and the Dice loss.

3.5. Evaluation metrics
To quantitatively evaluate the proposed model, we use Dice similarity coefficient (DSC), sensitivity (SEN), 
relative area difference (∆A), and Hausdorff distance (HAU) to characterize the performances of the methods 
on the test datasets. We use the overall average metrics to select the best model during the network architecture 
optimization. To comprehensively compare our final model to the existing networks, in addition to the overall 
average metrics, we also evaluate the results with respect to the image properties for the CBIS-DDSM dataset 
(figures 1(c)–(g)). DSC, SEN, ∆A, and HAU are defined as:

DSC =
2TP

2TP + FP + FN
 (10)

SEN =
TP

TP + FN
 (11)

∆A =
|Apred − AGT |

AGT
=

|(TP + FP)− (TP + FN)|
TP + FN

 (12)

HAU = max(h( pred, GT), h(GT, pred)) (13)

where pred refers to network predictions and GT referes to ground truth segmentations. Apred refers to the 
predicted mass area and AGT refers to the ground-truth mass area. TP, FP, and FN refer to true positives, false 

Figure 3. Upsampling block. (a) The bilinear upsampling block (BU block). (b) The attention-guided dense-upsampling block (AU 
block). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Phys. Med. Biol. 65 (2020) 055005 (17pp)
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positives, and false negatives. h(A, B) = max(a ∈ A)(b ∈ B)||a − b|| and || · || refers to the L2 distance between 
the two points.

Differences between the different models were evaluated by Wilcoxon signed-rank test with a significance 
threshold of p   <  0.05.

3.6. Experimental set-up
Our proposed network as well as the comparison models were implemented with PyTorch (Paszke et al 2017). 
Network training and testing were run on a NVIDIA GeForce GTX 1080Ti GPU (11GB) with batch size of 4. 
We used ADAM with the AMSGRAD optimization method (Reddi et al 2017). The learning rate was initially 
set to 1 × 10−4, and step decay policy was applied, specifically with [40, 30, 30, 20] epochs at the learning rate of 
[1 × 10−4, 5 × 10−5, 1 × 10−5, 1 × 10−6]. The INbreast dataset contains 107 images, which may limit the proper 
training of a deep neural network. Therefore, we tried to fine-tune the models pretrained on the CBIS-DDSM 
dataset. We set the respective hyper-parameters in (8) and (9) empirically to ε = 1.0 and α = 1.0. We have 
tested α with different values (0.5, 1.0 and 2) and found that 1.0 achieved the best segmentation performance 
(supplementary file table S2). The determination of the reduction ratio r will be discussed in the results section.

To validate the effectiveness of our proposed AUNet, we conducted ablation experiments. Specifically, to 
select the best network backbone, we have tried to substitute the encoder and decoder blocks in figure 2(a) with 
the deep unit (figure 2(c); Deep-UNet) or res unit (figure 2(d); Res-UNet) but keep the BU block (figure 3(a)) 
unchanged. In addition, different combinations of the encoder and decoder units have been tested to check the 
feasibility of symmetric and asymmetric structures. Finally, we compare the segmentation results of the pro-
posed AUNet with three established FCNs, UNet (Ronneberger et al 2015), FusionNet (Quan et al 2016), and 
FCDenseNet (Jégou et al 2017). The original UNet utilizes deconvolution for upsampling. However, exper-
imental results demonstrated that bilinear upsampling is more effective for our application (supplementary 
file table S1). We adopted bilinear upsampling for all the networks. FusionNet introduces residual connections 
to UNet and increases the network depth by adding more convolution layers in each unit (5 convolutions per 
unit). FCDenseNet103 extends the recently published architecture DenseNet to fully convolutional networks for 
image segmentation task. Similarly, all the networks were trained from scratch for the CBIS-DDSM dataset and 
fine-tuning was investigated on the INbreast dataset. We show that although FusionNet and FCDenseNet103 are 
much deeper than AUNet, AUNet can still generate better segmentation results, which highlights the effective-
ness of the proposed AU block. Three independent experiments were done for each network and the results are 
presented as (mean ± s.d.).

4. Experimental results

In this section, we present the results on the two public datasets, CBIS-DDSM and INbreast, and compare the 
results of the proposed AUNet to other FCNs.

4.1. Results on CBIS-DDSM dataset
In this section, we firstly discuss the choice of the different encoder/decoder blocks. Then the determination of 
the reduction ratio r is demonstrated. Finally, we compare the results of the optimized AUNet to the three FCNs.

4.1.1. Optimization of the network backbone
Results of networks employing different encoder and decoder blocks are presented in table 1. The model names 
indicate the units applied with the first word referring to the encoder block and the second referring to the 
decoder block. For example, the model Basic-Deep-UNet means we utilized the basic unit (figure 2(b)) for the 
encoder pathway and the deep unit (figure 2(c)) for the decoder pathway. From table 1, two general conclusions 
could be made: (a) Deeper networks generally achieve better performances with higher DSC, higher SEN, lower 
∆A, and lower HAU (compare UNet to Deep–Deep-UNet); (b) Models with asymmetric structures, especially 
those employing the basic unit in only one pathway, perform better than models with symmetric structures 

(compare Res-Basic-UNet to Res–Res-UNet and Res-Deep-UNet).
By taking all the four evaluation parameters into consideration, we selected the model ‘Res-Basic-UNet’ as 

our network backbone since it achieves the highest average DSC (0.775 ± 0.002) among all the models and, in the 
meantime, comparable SEN (0.823 ± 0.015 versus 0.825 ± 0.008), ∆A (0.352 ± 0.036 versus 0.347 ± 0.009), 
and HAU (3.18 ± 0.04 versus 3.16 ± 0.03) to the respective best results.

4.1.2. Performance enhancement by the AU block
The introduction of the AU block (figure 3(b)) to our network backbone brings an obvious performance 
increment shown by all the four evaluation characteristics (table 2). The reduction ratio r is very important 
for the capacity and computational cost of the proposed AUNet. Therefore, we have conducted experiments to 
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finalize the selection. A wide range of r has been tested from 2 to 32. Results indicate that with r  =  16, the best 
model performance could be achieved (table 2). Besides, it could also be observed that regardless of the choice of 
r, the proposed AU Block could always enhance the segmentation performance compared to the selected network 
backbone (Res-Basic-UNet), which demonstrates the general effectiveness of the proposed block. For all the 

following experiments, r  =  16 is applied unless otherwise specified.

4.1.3. Comparison to established FCNs
Our proposed AUNet achieves better segmentation metrics when compared to established FCNs (table 3). 
Comparing among the three established models, FusionNet gives the highest DSC, the lowest ∆A, and the lowest 
HAU, whereas FCDenseNet103 presents the highest SEN. This indicates that FCDenseNet103 increases its 
capability of finding the mass locations by generating more false positives. Since FCDenseNet103 is much deeper 
than the other networks, it suggests that very deep networks perform worse on the mammographic datasets 
probably caused by overfitting. On the other hand, our proposed AUNet achieves the highest DSC, the highest 
SEN, the lowest ∆A, and the lowest HAU, which demonstrates the suitability of our proposed network for our 
whole mammographic mass segmentation task. Our model shows an average DSC increase of at least 2.0% 

(statistically significant with p   <  0.05 by Wilcoxon signed-rank test) compared to the best performed FCNs.
Considering the inherent differences among the images having different categories (subtlety, BIRADS, mass 

shape, mass margin, and pathology), the segmentation performances of the different networks are also presented 
with regards to these properties. Combining the different categories (21 in total: 5 subtlety groups, 4 BIRADS 
categories, 5 shape groups, 5 margin categories, and 2 pathology groups) with the different evaluation metrics 
(DSC, SEN, ∆A, and HAU), there are 84 cases (detalied results in supplementary file tables S3–S6). Overall, our 
AUNet still achieves the best results, ranking the 1st in 56 cases (16 for DSC, 11 for SEN, 14 for ∆A, and 15 for 
HAU). FusionNet and FCDenseNet103 obtain the best results in 15 and 10 cases, respectively. UNet performs the 
worst in this aspect with only 3 1st cases.

To directly compare the performances of the different networks, the empirical cumulative distributions of 
DSC were plotted (figure 4). The closer the distribution line to the lower right position in the figure, the more 
images are segmented with high DSC values by the corresponding network. Thus, we could conclude that for the 
CBIS-DDSM dataset, AUNet achieves a relatively better mass segmentation performance, followed by Fusion-
Net, FCDenseNet, and UNet.

4.2. Results on INbreast dataset
The INbreast dataset is smaller than the CBIS-DDSM dataset. As such, we tried to re-use the CBIS-DDSM trained 
models and fine-tuned those models using the INbreast dataset. Moreover, 5-fold cross-validation experiments 
were conducted to generate meaningful and convincing results.

The segmentation results of the proposed AUNet and the three established models with/without pretrain-
ing on CBIS-DDSM are listed in table 4. It could be observed that with or without the pretraining step, AUNet 

Table 1. Ablation experiments employing different encoder–decoder blocks.

Models DSC (%) SEN (%) ∆A (%) HAU

UNet (Basic–Basic) 73.6 ± 0.2 79.4 ± 1.3 42.7 ± 3.1 3.38 ± 0.04

Basic-Deep-UNet 74.3 ± 0.1 78.8 ± 0.4 37.7 ± 1.2 3.28 ± 0.05

Basic-Res-UNet 74.6 ± 0.3 80.0 ± 0.7 42.0 ± 1.6 3.31 ± 0.07

Deep-Basic-UNet 77.3 ± 0.5 82.5 ± 0.8 36.6 ± 0.2 3.16 ± 0.03

Deep–Deep-UNet 77.3 ± 0.4 81.3 ± 1.2 35.7 ± 1.8 3.19 ± 0.04

Deep-Res-UNet 76.9 ± 0.7 81.6 ± 1.1 36.4 ± 1.9 3.16 ± 0.05

Res-Basic-UNet 77.5 ± 0.2 82.3 ± 1.5 35.2 ± 3.6 3.18 ± 0.04

Res-Deep-UNet 76.3 ± 0.2 81.9 ± 1.5 38.4 ± 3.8 3.23 ± 0.04

Res–Res-UNet 76.2 ± 0.1 80.4 ± 0.2 34.7 ± 0.9 3.19 ± 0.02

Table 2. Investigating the influence of the reduction ratio r.

Reduction ratio DSC (%) SEN (%) ∆A (%) HAU

2 80.6 ± 0.2 83.7 ± 0.9 29.1 ± 1.2 3.02 ± 0.03

4 80.8 ± 0.2 84.6 ± 0.4 28.5 ± 0.8 2.97 ± 0.02

8 81.0 ± 0.3 84.4 ± 0.3 29.1 ± 2.4 2.97 ± 0.06

16 81.8 ± 0.0 84.9 ± 0.3 26.9 ± 0.3 2.96 ± 0.03

32 80.8 ± 0.0 84.1 ± 0.5 28.5 ± 1.4 2.98 ± 0.01
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always generates better segmentation metrics and pretraining improves the segmentation performance of all the 
methods significantly. With pretraining on CBIS-DDSM, the results of the three established models present a dif-
ferent pattern from the CBIS-DDSM dataset. Among the three established models, FCDenseNet103 generates the 
highest DSC and SEN value, UNet shows the lowest ∆A, and FusionNet gives the lowest HAU. It is interesting that 
FusionNet shows much worse performance on INbreast than that on CBIS-DDSM. On the other hand, compared 
to the three models, our proposed AUNet still generates the highest DSC, the highest SEN, the lowest ∆A, and 
the lowest HAU. AUNet shows an average DSC increase of at least 3.0% (statistically significant with p   <  0.05 by 
Wilcoxon signed-rank test) and HAU decrease of 0.29 (statistically significant with p   <  0.05 by Wilcoxon signed-
rank test). Similarly, the empirical cumulative distribution plot indicates that for INbreast, AUNet still achieves a 
relatively better segmentation performance, followed by FCDenseNet, FusionNet, and UNet (figure 5).

4.3. Qualitative results
Figure 6 presents several segmentation results generated by the different networks for qualitative comparisons. We 
can see, overall, our proposed AUNet performs better than the other three FCNs for our whole mammographic 

Table 3. Segmentation performance of different FCNs on the CBIS-DDSM dataset.

Models DSC (%) SEN (%) ∆A (%) HAU

UNet 73.6 ± 0.2 79.4 ± 1.3 42.7 ± 3.1 3.38 ± 0.04

FusionNet 79.8 ± 0.5 83.9 ± 0.8 31.3 ± 0.5 3.01 ± 0.03

FCDenseNet103 78.2 ± 0.1 84.2 ± 0.6 40.2 ± 0.3 3.13 ± 0.04

AUNet 81.8 ± 0.0 84.9 ± 0.3 26.9 ± 0.3 2.96 ± 0.03

Figure 4. Empirical cumulative distribution of DSC on CBIS-DDSM. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Table 4. Segmentation performance of different FCNs on the INbreast dataset.

Models DSC (%) SEN (%) ∆A (%) HAU

UNet (w/oa) 62.3 ± 3.7 62.7 ± 4.0 54.3 ± 19.7 4.73 ± 0.26

UNet (w/b) 69.3 ± 6.8 70.4 ± 8.8 44.0 ± 13.3 4.54 ± 0.42

FusionNet (w/o) 62.1 ± 5.8 65.1 ± 5.4 62.7 ± 30.9 4.80 ± 0.33

FusionNet (w/) 73.2 ± 5.8 74.6 ± 5.4 69.8 ± 33.8 4.33 ± 0.34

FCDenseNet103 (w/o) 42.9 ± 8.5 52.8 ± 11.9 149.5 ± 71.8 6.20 ± 0.52

FCDenseNet103 (w/) 76.1 ± 4.6 77.9 ± 4.7 47.1 ± 17.3 4.35 ± 0.35

AUNet (w/o) 64.0 ± 7.6 66.0 ± 7.4 51.6 ± 21.0 4.66 ± 0.43

AUNet (w/) 79.1 ± 6.0 80.8 ± 7.1 37.6 ± 15.4 4.04 ± 0.33

a w/o—Without pretraining on CBIS-DDSM
b w/—With pretraining on CBIS-DDSM
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mass segmentation task. In addition, it could be observed that AUNet displays an impressive ability to suppress 
the false positive results of UNet without increasing the number of false negatives, whereas both FusionNet and 
FCDenseNet103 are not effective in this aspect or even make the situation worse (figure 6; the first, second, and 
last rows). This observation is consistent with the quantitative results discussed before. Lastly, our AUNet could 
give accurate segmented masses for difficult samples when the other three networks could barely find the targeted 
regions at all, such as the third example in figure 6.

Figure 5. Empirical cumulative distribution of DSC on INbreast with pretraining. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Figure 6. Segmentation results of different networks. From left to right, the columns correspond to the input images, the ground 
truth labels, the segmentation results of UNet, FusionNet, FCDenseNet103, and our proposed AUNet, respectively. The white circles 
indicate the boundaries of the labels and the green circles indicate the boundaries of the segmentation results. The red number on 
the right bottom of each image is the DSC value of the segmentation result. The first two rows are from the CBIS-DDSM dataset 
and the last two rows are from the INbreast dataset. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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4.4. Results on extracted image patches
In order to compare the performance of proposed network directly to the literature on breast mass segmentation, 
we also conducted experiments on extracted mass-centered image patches for the INbreast dataset. For each 
mammogram, we first found the smallest rectangular that could accommodate the mass. Then, the mass-centered 
image patch was extracted through enlarging the rectangular by 20% in area with an equal elongation ratio in 
width and height of 

√
1.2. Similar to the whole mammogram situation, 5-fold cross-validation experiments 

with three replicates were done. Results in table 5 confirms that our proposed AUNet could also achieve better 
segmentation metrics on mass-centered image patches compared to both the three FCNs and the literature 
reported results.

4.5. Model complexity
Table 6 lists the total number of convolutional and FC layers, the optimizable parameters, and the inference time 
in terms of frames per second (FPS) with input resized to 256 × 256. Obviously, UNet is the simplest and fastest 
model, and the other three models (FusionNet, FCDenseNet103, and AUNet) have similar inference speeds with 

AUNet achieves the best segmentation performance for our task.

5. Discussion

Segmentation of mammographic masses is a challenging task as mammograms have low signal-to-noise ratio 
and breast masses may vary in shapes and sizes. An easy alternative is to segment masses from extracted ROIs. 
However, manual extraction of ROIs is a tedious task. Automatic detection algorithms still subject to high 
false positives and specially designed post processing methods are required to achieve expected performance 
(Dhungel et al 2015a). Therefore, automatic breast mass segmentation in whole mammograms is of great clinical 
value. There are several reports targeting at developing deep learning models for whole mammographic mass 
segmentation, such as the ASPP-FC-DenseNet and the Attention Dense-U-Net (Hai et al 2019, Li et al 2019a). 
ASPP-FC-DenseNet achieved a DSC of 76.97% on the private dataset and Attention Dense-U-Net achieved a 
sensitivity of 77.89% on the selected DDSM dataset. Both are much smaller than the results achieved in this 
study, which confirms the suitability of our proposed AUNet for the task. Figure 7 presents a few segmentation 
results of AUNet. We admit that compared to inputs with irregular or small masses, AUNet performs slightly 
better for inputs with large and regular masses. However, figure 6 indicates that AUNet still performs better than 
the three FCNs for inputs with small and irregular masses. Overall, figures 6 and 7 conclude that for inputs with 
different mass shapes and sizes, our AUNet could always give very accurate segmentation results.

Mammograms are taken with high resolutions. Images from CBIS-DDSM dataset have a width ranging from 
1786 to 5431 pixels and a height ranging from 3920 to 6931 pixels. Images form INbreast have either 3328 × 4084 
or 2560 × 3328 pixels. To facilitate the training and testing of deep neural networks, necessary image preprocess-
ing steps are required, such as image patch extraction or resizing. Although patch extraction method can preserve 
all the original image information and researchers have developed elegant approaches to extract informative 
image patches (Qin et al 2018), we adopted resizing in this study. On one hand, it has been suggested in the comp-
uter vision field that global contextual information is important for accurate image segmentation (Wang et al 

Table 5. Segmentation performance on mass-centered image patches for INbreast dataset.

Models DSC (%) SEN (%) ∆A (%) HAU

Cardoso et al (2015) 0.88 × 100% — — —

Dhungel et al (2015b) (0.90 ± 0.06)× 100% — — —
Dhungel et al (2017)a (0.85 ± 0.02)× 100% — — —

UNet 92.0 ± 0.8 93.1 ± 1.2 8.3 ± 2.5 6.88 ± 0.18

FusionNet 92.0 ± 0.8 92.7 ± 1.0 8.1 ± 2.9 6.94 ± 0.19

FCDenseNet103 89.5 ± 0.8 89.6 ± 2.0 11.7 ± 2.2 7.23 ± 0.14

AUNet 92.4 ± 0.9 93.7 ± 0.9 7.5 ± 2.6 6.85 ± 0.28

a Patches were extracted based on detection results.

Table 6. Computational complexities of different networks.

Models UNet FusionNet FCDenseNet103 AUNet (R  =  16)

Convolutional and FC layers 23 50 103 44

Parameters (million) 34.5 78.5 13.9 75.5

FPS (with 256 × 256 inputs) 59 36 27 32
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2018b). Patch extraction restricts the field of view of the network, which may influence the segmentation perfor-
mance. Therefore, the correlations between the patches need to be carefully considered, which we will investigate 
in the following work. On the other hand, after resizing, most masses still occupy hundreds to thousands of pix-
els. We believe these downsampled masses are large enough to preserve the overall mass information. Moreover, 
different input settings have been tested with gray or RGB inputs, with different resolutions (256 × 256 inputs 
or 512 × 512 inputs), and with fixed aspect ratios by zero padding the images before resizing (table 7). Although 
different inputs show influence on the final segmentation results, our proposed AUNet always achieves the best 
performance (more results in supplementary file tables S7–S9). Thus, it can be anticipated that our method 
should also be able to achieve the best segmentation performance if the full resolution inputs are utilized. With 
detailed inspection, the results show that RGB inputs could improve the segmentation performance. Even 
though it was not investigated in the current study, RGB inputs can also facilitate the direct transfer learning of 
networks trained on natural images. Resizing to the higher resolution (512 × 512 pixels) showed negative effects 
on the segmentation performance, which was also observed for the three established FCNs (supplementary file 
table S8). This weakened performance might be caused by two reasons. One is due to the GPU memory limita-
tion, batch size of 2 was applied for inputs with 512 × 512 pixels instead of 4 for inputs with 256 × 256 pixels. 
The other is it is difficult to accurately define the mass boundaries in mammograms. At higher resolutions, the 
images are more sensitive to manual label errors. Zero padding brings large regions of background to the inputs 
and hinders the segmentation process. In this study, our experiments were done with RGB inputs resized to 

256 × 256 pixels to maximize the segmentation performance.
Our AUNet, as well as the three comparison networks, showed severely worse performance on the INbreast 

dataset compared to that on the CBIS-DDSM dataset when trained from scratch (tables 3 and 4). A major cause 
could be the large difference in the sample size. Much better results were obtained when the networks were pre-
trained on the CBIS-DDSM dataset. But still, the performance is not as good as that on the CBIS-DDSM dataset. 
Except for the sample size, another observable difference between the two datasets is the different image intensity 
ranges (figure 8). Although images from both datasets were stored with a 16-bit integer data type, all images 
from CBIS-DDSM have an intensity range of [0, 65 535], whereas images from INbreast have different intensity 
ranges with the minimum of [0, 1811] and maximum of [0, 4095]. Even though intensity normalization was con-
ducted before the images were inputted into the networks, the original differences might also affect the results. 
Besides, as shown in figure 1, the image distributions are also different between the two datasets, which might 
influence the results a little bit. The difference between digitized film-screen mammograms of CBIS-DDSM and 
full-fild digital mammograms of INbreast is another possible cause. The observed model performance differ-
ence between the two datasets agrees with the commonly accepted condition for the application of trained deep 

Figure 7. Segmentation results of AUNet when input images contain masses of different shapes and sizes. The left three columns 
are images from the CBIS-DDSM dataset and the right three columns are from the INbreast dataset. The white circles indicate 
the boundaries of the labels and the green circles indicate the boundaries of the segmentation results. Red color regions indicate 
the ground-truth masses and green indicate the segmentation results. Yellow color regions indicate the overlap between the 
segmentation and the ground-truth. The red number on the right bottom of each image is the DSC value of the segmentation result. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7. Segmentation performance of AUNet with different input settings on CBIS-DDSM dataset.

Inputs DSC (%) SEN (%) ∆A (%) HAU

Gray input (resize 256 × 256) 80.9 ± 0.4 84.5 ± 0.5 29.9 ± 0.2 2.97 ± 0.01

RGB input (resize 256 × 256) 81.8 ± 0.0 84.9 ± 0.3 26.9 ± 0.3 2.96 ± 0.03

RGB input (resize 512 × 512) 78.7 ± 0.5 81.1 ± 0.1 28.6 ± 1.0 4.30 ± 0.02

RGB input (pad & resize 256 × 256) 78.9 ± 0.2 83.3 ± 0.2 30.4 ± 1.1 2.20 ± 0.01

Phys. Med. Biol. 65 (2020) 055005 (17pp)



14

H Sun et al

 learning models that only when the testing dataset has a similar data distribution with the training dataset, the 
models can be applied directly. When the testing dataset has a different distribution, the models need to be fine-
tuned. To apply the optimized models to unknown digital mammograms, there are two possible solutions. One is 
labeling a small dataset in the target domain and fine-tuning the trained models accordingly. The other is trans-
forming the mammograms to fit the distribution of the CBIS-DDSM/INbreast dataset.

UNet is a very powerful network for biomedical image segmentation (Ronneberger et al 2015) and is the tem-
plate for many following-up studies (Balagopal et al 2018, Li et al 2019b). Our proposed AUNet adopts a similar 
encoder–decoder architecture. To enhance the performance, we first investigated the network backbone design. 
Compared to the basic unit (figure 2(b)) used in both the encoder and decoder pathways of naive UNet, we found 
that our asymmetrical network backbone Res-Basic-UNet was more suitable for our application. This is reason-
able as the res unit (figure 2(d)) in the encoder pathway promotes the information and gradient propagation 
while the basic unit (figure 2(b)) in the decoder pathway better preserves important semantic information of 
the high-level features. Our results show that Res-Basic-UNet improves the DSC by 3.9% over UNet (statistically 
significant with p   <  0.05 by Wilcoxon signed-rank test).

Then, we believe that the simple bilinear upsampling method and the feature fusion through concatena-
tion adopted by UNet are not effective enough. Significant information loss might happen, which could greatly 
worsen the segmentation results. Therefore, we proposed a new upsampling block, AU block, to solve these 
problems. AU block utilizes the high-level features in two means. In one way, the high-level features are densely 
upsampled and fused with the low-level features by summation. In the other, the high-level features are bilin-
ear upsampled and concatenated with the convolution smoothed summation (figure 3(b)). Moreover, in order 
to select the rich-informative channels, a channel-wise attention component is used after the concatenation. 
With AU block, our AUNet increases the DSC by another 4.3% over Res-Basic-UNet (statistically significant with 
p   <  0.05 by Wilcoxon signed-rank test). Besides, AUNet generates better segmentation results than the three 
widely used FCN segmentation networks and recently published studies for both CBIS-DDSM and INbreast 
datasets.

False positive and false negative are important issues that need to be considered for CAD systems. False posi-
tive is commonly found to be the problem that hinders the application of automatic detection algorithms to 
medical imaging (Dhungel et al 2015a, Samala et al 2016b). It can bring huge psychological stress and depression 
to patients and result in unnecessary biopsies. False negative, on the other hand, is detrimental for clinical appli-
cations which can miss early diagnosis. It is important to reduce both false positive and false negative results. The 
low signal-to-noise ratio of a mammogram makes it difficult to clearly differentiate the masse from the normal 
breast tissues (figures 1(a) and 6). All the three FCNs show serious false positive segmentation results, which 
greatly affected the evaluation metrics (figure 6). On the contrary, AUNet is able to effectively reduce the false 
positive incidences without increasing the false negative results through the information selection by channel-
wise attention. Moreover, thanks to the full utilization of the feature map information, AUNet also performs bet-
ter at decreasing the false negative results (figure 6; the third example).

The proposed whole mammographic mass segmentation method has two major limitations. According to 
the results of the two datasets, the performance of the network depends on the datasets to some extent. The two 
datasets we utilized have their own advantages. CBIS-DDSM has a lot more cases than INbreast whereas INbreast 
has higher precision (Moreira et al 2012, Lee et al 2017). We lack a comprehensive dataset that can fully validate 
the effectiveness of the proposed method. The other limitation is our method is developed solely on images, and 
the clinical parameters, such as the age of patients, were not considered, which we will consider in the following 
work. On the other hand, breast masses are significant contributors to breast cancers (Giger et al 2013). Mass 
segmentation is an important step for the following disease diagnosis and treatment planning. After the mass 
segmentation, image features can be extracted from and surrounding the specific regions and different analyses 
can be conducted. These image features could be used to differentiate breast cancer subtypes (Wu et al 2017a). 

Figure 8. Example images from the two datasets. Image and label from the CBIS-DDSM categorized as BIRADS 1 (a), from the 
CBIS-DDSM categorized as BIRADS 4 (b), from the INbreast categorized as BIRADS 1 (c), and from the INbreast categorized as 
BIRADS 4 (d).
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They were found to be associated with tumor-infiltrating lymphocytes in breast cancer, which is a promising pre-
dictive biomarker for the effectiveness of immunotherapy treatment (Wu et al 2018b). Some of them were identi-
fied as valuable prognostic markers for adjuvant and neoadjuvant chemotherapies (Wu et al 2017b, 2018a). As a 
necessary next step for our current work, we will also study the corresponding image feature extraction methods 
as well as imaging-based disease diagnosis and treatment plan selection in the future.

Traditional two-dimensional (2D) mammograms are taken when the breast is compressed, which may lead 
to tissue overlap and influence the subsequent diagnosis. The recent introduction of digital breast tomosynthesis 
(DBT) technology has been proved to have improved sensitivity and specificity compared with 2D mammogra-
phy (Heather et al 2015, Conant et al 2019). There are a number of studies working on the CNN-based analysis 
of DBT, including the reconstruction of DBT volume (Ayyagari et al 2018), detection of breast masses (Samala 
et al 2016a) or microcalcifications (Samala et al 2016b), and classification of benign and malignant breast masses 
(Samala et al 2018). Limited datasets to train a deep neural network is always a key problem. For DBT, this issue 
is even severer (Geras et al 2019). Transfer learning is an effective solution, and studies indicated a multi-stage 
knowledge transfer strategy, consisting of transferring from natural image to mammography and mammogra-
phy to DBT, achieved better breast mass malignancy classification performance than direct transfer from natural 
image to DBT (Samala et al 2018). Similarly, for our task on breast mass segmentation, our model is expected to 
serve as a better baseline to be transferred to DBT analysis.

6. Conclusion

In this work, we propose a new network, AUNet, for the mass segmentation in whole mammograms. Specifically, 
we utilized an asymmetrical encoder–decoder architecture and introduced a new upsampling block, AU block, 
to boost the segmentation performance. Comprehensive experiments have been conducted. AUNet presented 
improved segmentation behaviors on both CBIS-DDSM and INbreast datasets compared to existing FCN 
models, which proves its effectiveness and robustness. In addition, AUNet could greatly reduce both false negative 
and false positive results. We make our code available, by which we hope our work can attract and inspire more 
following-up studies in the field.
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